Step of Proof: fseg_append
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
fseg
append
:
T
:Type,
l1
,
l2
,
l3
:(
T
List). fseg(
T
;
l1
;
l2
)
fseg(
T
;
l1
;
l3
@
l2
)
latex
by ((((Unfold `fseg` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
)
CollapseTHEN (((ExRepD)
CollapseTHEN (((((InstConcl [
l3
@
L
])
THENM (((WeakSubstFor
l2
0)
THENM (RWO "append_assoc" 0))
))
)
T
CollapseTHENA (Auto
))
))
))
TC
latex
TC
.
Definitions
as
@
bs
,
fseg(
T
;
L1
;
L2
)
,
x
:
A
.
B
(
x
)
,
A
List
,
[]
,
i
j
,
A
B
,
[
car
/
cdr
]
,
SQType(
T
)
,
{
T
}
,
s
~
t
,
,
S
T
,
Top
,
x
:
A
.
B
(
x
)
,
Void
,
{
x
:
A
|
B
(
x
)}
,
||
as
||
,
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
P
Q
,
P
Q
,
Type
,
,
type
List
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
s
=
t
,
t
T
Lemmas
non
neg
length
,
cons
one
one
,
guard
wf
,
nat
wf
,
length
wf
nat
,
top
wf
,
member
wf
,
iff
wf
,
rev
implies
wf
,
append
assoc
,
append
wf
origin